How to Calculate Inductance?

An inductor is a common electronic component that plays crucial roles such as filtering and energy storage in circuits. This article briefly introduces the calculation of inductance and relevant formulas.

Unit of Inductance

The unit of inductance is Henry - H.

 $1H = 1000mH = 10^{6}\mu H = 10^{9}nH$

Calculation of Inductance

Inductance of a Single - Turn Coil (AL)

For an iron - core coil, the inductance L can be calculated using the formula: $L = N^2 * AL$, where N is the number of turns.

Relationship between Voltage and Inductance in an AC Circuit

When an alternating current is passing through, the relationship between voltage and inductance is as follows:

U = I * XL

 $XL = 2\pi fL$

Where:

- 1. U represents voltage.
- 2. I represents current.
- 3. XL represents impedance.
- 4. f represents frequency.
- 5. L represents the inductance value.

Applications of Inductors

Inductors are widely used in various fields. In power supply circuits, they are used for filtering to smooth out voltage fluctuations. For example, in a computer power supply, inductors help remove high - frequency noise from the direct current output, ensuring stable power supply for the computer components.

In signal processing circuits, inductors can be used to separate different frequency signals. In a radio receiver, inductors are part of the tuning circuit, allowing the receiver to select a specific radio frequency signal from a wide range of electromagnetic waves.